机器人领域


MEMS陀螺仪和GPS模块在移动机器人的应用

      地面机器人系统通常用于人工介入成本过高、危险过大或者效率过低的任务。在许多情况下,机器人必须能够自主工作,利用导航系统来监视并控制它从一个位置移到另一个位置。管理位置和运动时的精度是实现有用、可靠的自主工作的关键。

      MEMS(微机电系统)陀螺仪可提供反馈检测机制,对优化导航系统性能非常有用。


大多数机器人系统就是一个采用先进MEMS器件来改善导航性能的自主系统。

       机器人导航概述:机器人的移动通常是从管理机器人总体任务进度的中央处理器发出位置变化请求开始的。导航系统通过制定行程计划或轨迹以开始执行位置变化请求。

      行程计划需考虑可用路径、已知障碍位置、机器人能力及任何相关的任务目标。例如,对于医院里的标本递送机器人,递送时间非常关键。行程计划被馈入控制器,后者生成传动和方向配置文件以便进行导航控制。这些配置文件可根据行程计划执行动作和进程。该运动通常由若干检测系统进行监控,各检测系统均产生反馈信号;反馈控制器将信号组合并转换成更新后的行程计划和条件。

      开发导航系统的关键步骤始于充分了解每种功能,尤其需要重视其工作目标和限制。各项功能通常都有一些明确界定且易于执行的因素,但也会提出一些需要加以处理的具有挑战性的限制。某些情况下,这可能是一个反复试探的过程,即识别和处理限制的同时又会带来新的优化机遇。
       以Adept Mobile Robots Seekur为例,它是一个自主机器人,具有四轮传动系统,每个车轮均有独立转向和速度控制能力,可在任何水平方向灵活地移动平台。

      正向控制是通过发出机器人本体命令来实现的。这些命令本质上是误差信号,产生自轨迹规划器提供的行程计划与反馈检测系统提供的行程进度更新信息之间的差异。


      某导航系统利用GPS、激光检测和MEMS陀螺仪来独立控制各个车轮这些命令被馈入逆向运动学系统,后者将机器人本体命令转换成每个车轮的转向和速度配置文件。这些配置文件使用阿克曼转向关系进行计算,整合了轮胎直径、表面接触面积、间距和其他重要几何特性。

关闭